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Maximum Likelihood Estimation for Two Parameter
Decreasing Failure Rate Distribution

Using Censored Data

by S. C. Saunders and J. M. Myhre

TECHNICAL SUMMARY

Let X be the measure of the lack of resistance to sh'ck for a component,
the life of which, say X., will be exponential. If the variability of manu-

facture determines the frequency of the different A-values, described by a
r.v., Y 1, G, then T = X is the life length of a component selected at random.

It will have a suivivaldistribution

R(t) = EyP(Xy > tfY] = I e' tdG(X) for t > 0.
0

This is a mixed-exponential distribution with hazard Q = -lnR. If G is the

r(a,e) distribution we find the hazard to be Q(t) = aln(1 + ta), which is a
Pareto type II law, known from applications in economics.

In general if q = Q' is any mixed-exponential hazard rate then for t > 0

SNe-xtdG(X)
q(t) =

0 eXtdG(X)

and all such hazard rates are known to be decreasing.

Let 2 be a given class of decreasing hazard rate functions with the
following properties: q £ nis twice differentiable, standardized, i.e.,
q(O) = 1, and it and the induced functionsp and , where

*(x) = xq(x) and (x) = 1 + xq'(x)/q(x)
satisfy 10 t is increasing,

20 q is log-convex,

30 4 has a limit at dnd 0 < ( ) <1,

alternatively, sometimes the stronger condition is assumed, viz.,

3' p is decreasing.

The unknown parameters of the life distribution under study are introduced
in a manner consistent with the gamma mixed exponential; viz.,

R(t) = e-aQ(ts)

where a is the shape parameter and 8 the scale parameter, both positive.
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Each element of this class D will generate a two parameter family,
which is a subset of the DFR distributions.

Are there any distributions with hazard rates which satisfy these
conditions? Yes, the exponential and the gamma-mixed-exponential do. Are
there other DFR distributions which are not mixed-exponential which do?
Yes, the failure rate of the F(v,1) distribution does, when 0 < v < 1
although it is not easy to show.

Are there any closure properties to this class? Yes, if q is a
decreasing standardized hazard rate satisfying 10, 20, 30 (or 3') then
qY for any 0 < y < 1 (called an Afanasev generalization) does. Is
0 closed under mixtures of distributions with hazard rates in D ?

Not always. If G is a distribution with support at only two points, the
G-mixed exponential will, if the probability of the higher failure rate
is not too large relative to the lower.

We now ask what are sufficient conditions on the mixing distribution so
that assumptions 10, 20, and 30 will be satisfied.

Theorem 1: If the mixing distribution G is such that the function

K(x,y) = G(y/x) for x,y > 0

is totally positive of order 2, then 10 is satisfied, i.e.,
is increasing.

We now give some conditions that a mixed hazard rate be log-convex on
(0,a-).

Theorem 2: If for a distribution G on (0,.) we define the convolution

G(2) = G * G and the related function

s S

G2(s) =(t -u) 2 dG(t) dG(u) for s > 0
u=O t=O

then the failure rate of the G-mixed exponential distribution is
log-convex if and only if for every exponential ramdom variable Z
we have

E 2AG(Z) 2_EZAG'(Z),

where
y

AG(Y) f f sG2(y - s) dG(2)(s). (1)

0

| I
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Corollary 1: If the mixing distribution G is such that the induced function
AG, defined in (1) ' is concave increasing then

2AG(x) > xAG (x) for all x > 0

and failure rate qis log-convex and 20 is satisfied.

Corollary 2: If the mixing distribution G has a density g = G' and the ratio

x g (2)(x)/g 2 (x) for all x > 0

is monotone decreasing, where g2 and g(2) are the corresponding

derivatives of the functions defined in theorem 2, then the failure
rate qG is log-convex.

Remark: If G is a F(c,1) distribution then one verifies directly that

( = 2 + 1 for x > 0

.2X

which decreases.

We do not consider as reasonable (for our application) mixing distributions-2

which are of infinite order, such as G(x) =e for x > 0, at the origin. We
admit for consideration only distributions which are either

(i) discrete in some neighborhood of zero or

(ii) of finite order at the origin, viz., there exists

> 0 such that X"K G(x) -, c > 0 as x - 0.

Theorem 3: For any G-mixed exponential distribution the induced function
G has the properties that G(0) = 1, is initially decreasing, bounded

above by unity, and the limit G H)exists with

CG = 1, if G is of type (i) and

G( = 0, if G is of type (ii), moreover

> 0 if and only if IG is increasing.

We now consider conditions on the mixing distribution which will insure
that 1 - is either monotone increasing or unimodal. Such behavior can
often be easily checked in specific instances, but we have a sufficient

condition in

Theorem 4: If the associated function AG' as determined from the mixing

distribution G in (1), is such that the kernel

K(x,y) = AG(Y/X) for x,y > 0

0-i



4

is totally positive of order 2, then the function 1 -

induced by the failurE rate of the G-mixed exponential
distribution will have at most one mode in [0,,-].

It is assumed that we are given a sample vector t = (t1, ..., t, ., t )
where t1, ..., tk are ordered observations of times of failure while
tk+11 ..., tn are the ordered observed alive-times (censored Tive,.).

The two empirical distributions of the times of failure and of the
sample will be denoted by

Fk(Y) =- of ti :i y for i = 1,..., k}

and similarly for F . We make the notational convention, to be used sub-n
subsequently for any function g, that its transform by an empirical
distribution, is

g f g(xt)dFn(t), 9(x) f g(xt)dFk(t).

0 0

Thus the likelihood can be written

L(a alt) = Znc, + kna + tnq(a) -a- ).

Pa-enthetically, for given 6 > 0 the likelihood L(-Is, t) is concave on
(0,.) and the MLE of a exists uniquely and can always be obtained from the
equation L'(aI.t) = 0. This tranforms all observations to an exponential
with unknown failure rate a and so the MLE is given by

S= k/nQ(B). (2)

We examine the case for unknown a in

Theorem 5: When the shape parameter a is presumed known and a sample vector t
and q e 2 are given, there exists an MLE of a, denoted by 3, and defined-
implicitly as the smallest positive root of the equation

(x)- x) (3)

only when
1 inf ,-(y) < 2n_< i

*f k~-1 a, y>O

A simpler situation exists in the following case.

Theorem 6: If q e 2 is an Afanas'ev generalization of a G-mixed exponential,
when G is of type (ii) and 0 < y < 1, with a known then for a given sample
the MLE of B exists if and only if

an
S1-_ y <-<I.

5 . . . .. ,., . . . . ...... I II
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Corollary 3: Under the hypothesis of theorem 6, if G is monotone then so is ,

the corresponding function-for the Afanas'ev generalization, and the MLE of a
exists.uniquely, i.e., there is at most only one solution to the equation (3).

We now turn to the estimation problem when both a and $ are unknown.

Theorem 7: For a given sample t, with q e D specified and a,S both unknown.
a MLE of 8, say $, exists as the smallest positive root of the equation

Z(x) - (x) = 0 for x > 0

where € = W/Q, if and only if the sample satisfies the inequality

2 < t (4)
AA

When 8 has been determined, the MLE of 3, say is then given by an
analogue of equation (2), namely,

a = k/n Q(8)

Our computational procedure based on the censored sample t and the
assumption q E D is as follows:

Al gori thin:

(a) Compute the sample moments t, T, t

(b) If inequality (4) is not satisfied the observations are
from an exponential distribution with failure rate X and
then estimate it by

a k

nt

(c) If inequality (4) is satisfied then use the sample functions
explicitly given by

n n x k
t(x) = x E tiq(xti)/ E Q(xti) Z(x) = 1 + k E (tiq'(xti)/q(xti)].

1 1 1

We guess $0 , then iterate using the inductive step;

given 8i, compute 0($i ) and calculate si+1 such that

C(ai+I ) =¢B)

We find a = lim ai, and compute
n

= k/ Z Q(ti ).
1
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Tte nature of the intersection guarantees that within the region when
D and C both decrease the iteration will rapidly converge, with a reasonable
first guess. When the functions q and Q are simple a small programmable
electronic calculator, such as the HP-67, can be used to obtain these estimates.

We now present some data sets from two different lots of flight control
electronic packages. Each package has recorded, in minutes, either a failure
time or an alive time, the latter is denoted by an affix +.

First Data Set

1, 8, 10, 59+, 72+, 76+, 113+, 117+, 124+, 145+, 149+, 153+, 182+, 320+.

Second Data Set

37, 53, 60+, 64+, 66+, 70+, 72+, 96+, 123+.

One checks that both data sets satisfy condition (4) so that both para-
meters can be estimated in a gamma-mixed-exponential model. Then using the
estimation techniques derived previously we obtain:

Date Set 1 Data Set 2

S : .0453,9 = 1.03 & .420,B = .01

A statistical test to determine whether the data require a constant or
decreasing failure rate was run on the data from sets 1 and 2. For data set
1 we reject constant failure rate (in favor of decreasing failure rate) at
the .10 level. For data set2wecannot reject the constant failure rate assumption
at thatlevel. In this.case, however, the constant failure rate estimates for
reliability and the mixed exponential estimates for reliability are close.
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0 Abstract

In this paper some of the problems of parametric estimation for

two important types of decreasing failure rate (DFR) distributions are

discussed. The first type of distribution represents the life of

mixed exponential populations; the second type of distribution

represents the life of mechanisms which "work harden" as they age,

i.e., old components are better than new.

A representation for the second type of distribution is given so

that, when satisfied, certain functional properties of the failure rate

of mixed exponential distributions are guaranteed. Conditions are

then imposed on the mixing distributions that will insure that the

failure rate of each type of distribution satisfy these conditions.

Shape and scale parameters for any standardized DFR family of this

type are to be estimated from the type of data which is available in

practice, namely, severly censored samples with only a few failure

observed, all of which occur early.

Conditions are obtained that maximum (rather than minimum)likelihood

estimates (MLE'S) exist; the condition is phrased in terms of censored

samples, namely if t, . , tk are observed failure times, while

tk+11 tn for 1 < k < n, are censored life observations from

this class of DFR distributions then the ME's of shape and scale

parameters exist if the following inequality is satisfied:

k n n

2 Z t Z ti< kn t2

j=1 i=l . i=

"C7
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Practical methods for the computation of the MLE's are given.

Actual data obtained from testing of integrated circuit electronic

packages illustrate the applicability and utility of the techniques and

the results' described.

Key Words

Reliability
Decreasing Failure Rate
Mixed Exponential

4 Censored Sample
Maximum Likelihood Estiration
Burn-in

. |
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1. Introduction

Because of the demand for high reliability in electronic

manufacturing, increasingly, integrated circuit modules are being used.

As a consequence, modular testing now frequently encounters to i

conditions: the first is, the life distribution seems to exhibit a

decreasing failure rate and the second is, samples are virtually always

censored.

Of course these events are not unrelated, the first implies the

second. The expense of testing will, when coupled with a decreasing

percentage of failures over time in the surviving population, nearly

always result in life length observations being censored in practice.

Several censored life data, with a paucity of failures, does not

allow the usual statistical methods such as employing the Kaplan-Meier

(1958) estimate of the survival function and plotting the negative of

its logarithms to see if its concave or convex. In many engineering

applications the monotone behavior of the hazard rate function can be

deduced from the physical-chemical nature of failure. In such cases,

only parameters need be estimated. There is a lack of estimation pro-

cedures which can utilize highly censored data and which avoid the

potential for bias inherent in Bayesian priors.

In this paper the maximum likelihood estimates (NffE's) are obtained

for both the shape and scale parameters of a class of two parameter

families of decreasing failure rate (DFR) distributions and conditions

are given for their existence along with practical methods of com-

putation. These estimates are derived for censored data, which contains

only a few failure observations, and a fortiori for complete samples.

1[



4

The conditions for he existence of the MLE's apply to the case

when the mean and variance of the DFR distributicns do not exist. It

is thought imrportant to have estiration procedures for such distributiors.

2. DECPESAING FA RE RIE_ MOD=S

We now discuss the physical Processes which determine the lergth

of life under consideration. Firstly let us suppose the quality of

ccrtruction of a cctcnent deternines the level of resistance to stress

which it can tolerate. Secondly, suppose the service environent provides

shocks of var-ying mag.itude to the component and failure takes place

when, for the first time, the stress from an enviror~entaly induced

shock exceeds the strength of the component.

if the time between shocks exceeding any specified mragnitude is

exponentially distributed, with a mean depending upon that rragitude,

then the life lergth of each component wil be excponentially distributed

with a failure rate which is determined by the quality of assembly. It

follows that each component in service will have a constant failure rate

but that the variation in manufacturing and inspection procedures will

cause the population to exhibit a decreasing failure rate. Instances of

such natural mixing of exponential distributions were first discussed by

Proschan (1963). Subsequently other distributions with decreasing failure

rates of practical interest were discussed by Cozzolino (1968). But

parametric farilies of mized exponential and DFR distributions have

received little attention compared with their LThR counterparts.

Alternatively, let us consider structures subjected to dynamc stresses

of such a nature that the first stresses to which they are subjected, if not

-severe encu , to initiate failure, only caused localized yielding and
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deformation, thus effecting local stress relief and reinforcement. Such

behavior increases their ability to withstand future stresses and could be

thought of as "work hardening". In such cases older structures in service

actually have -eater resistance to fatal shocks than younger ones; i.e.,

each component in service has a decreasing failure rate. (An .analogous

behavior exists for increased strength or immunity in biological systems.)

This may be thought of as "the older the better" (at least for certain periods

and purposes). Usually the failure mechanism, and its interpretation in

these DFR cases, is quite different from that of a mixed exponential model.

Let X be the measure of the lack of resistance to shock for a

component, the life of which, say X, will be exponential. If the vari-

ability of manufacture determines the frequency of the different X-values,

which we describe by a r.v., say A, with distribution G, then T-X A is the

life length of a component selected at random frcm those manufactured; it

will have a survival distribution R which can be written as the conditional

expectation

R(t) = EAP[XA > tjA] = f e-tdG(X).

This is a mixed-exponential (survival) distribution. It is also a Laplace

trans form.

One important mixed-exponential model is based on the gamma density:

If for some a, 8 > 0 we take the density

G'(X) - for X > 0 (2.0)r (a) a"

then the hazard function Q ) .in R is
Q(t) = aln(l + t3) for t > 0

and the density f = Qfe -Q is given by

f(t) = "fort> 0.
(1 +

OL<
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This two-parameter family seems to have been introduced in this country

by Lomax (1954) who regarded it as a generalization of the Pareto distribution.

It was called the Pareto Type II, and it has proved to be useful in business

analysis.

The estirraticn problems for this distribution have been treated in a

series of papers by 'Kulldorff and V'rnran (1973) and Vnrran (1976) but

without the physical interpretation mrade here.

Other investigators have made use of the gamma density, as we have, to

model variability among mana factured components, each one of which has a

constant failure rate while in service, see the papers of Harris and

Singpu-.valla (1968), (1969).

In certain instances, such as in medical studies of the etiology

of a disease,when the hazard rate is assumed to be either increasing or

decreasing a generalization of the Pareto law, exhibiting both types

of behavior depending upon its parameters, has been applied by David

and Feldstein (1979). They obtained the maximimi likelihood estimates

implicitly for two of three parameters, neither one being a scale para-

meter, in the case of progressively censored data.

The question we address is how should one proceed when from

physical circumstances the hazard rate is known to be mixed but by an

unknown distribution?

We study the consequences of a general mixing distribution. Let q be

any mixed exponential hazard rate, then for any t > 0

i qt) X'tdG(X)

f e-ttdG()

where, without loss of generality, the scale of X has been chosen so that

q is 6tandavdized, i.e., q(o) f XdG(X).= 1.
0



The unncwn parameters of the life distribution under study are intro-

duced in a marner consistent with the garmia-mixed exponential; viz.,

R(t) = eCQ(t') (2.2)

where a is the shape parameter and e the scale parameter, both positive.

We now introduce a model for work-hardened DFR life distributions, called

an A6aetstv gener oZza-tion, by postulating a hazard function (for urknowm

a, >0 but known y with 0 < y < 1) of the form

ta

a [q (x)3]dx
0

where q is defined as in (2.1) as a mixed-exponential.

It is clear that for y < 1 we have a decreasing failure rate distributioi

which is not mixed exponential. In practice the value of y is often determined

by the material properties of the component in service and is not estimated by

statistical techniques, see Weibull (1961).

Let us find the standardized hazard rate, say qA' for the Afanasev

generalization of the gamma mixture. We have

qA(t) = (1 + t)-Y for t > 0 (2.3)

from which we find the corresponding hazard function to be

[(i + t) - Y  I/(I - y) for 0 < y < 1

QA(t) = 
(.2.4)

1 In(; + t) for Y = 1

For y = 1 this is equivalent with a Weibull distribution with a location

parameter of minus one and a shape parameter of less than unity. In the

Soviet Union this model was introduced by Afanasev (1940) as a distribution

for fatigue life in metals.



We now examine the distribution which results from the mixing of two

exponential distributions. It is presumed that owing to occasional laxity

in quality control there is a low probability p < 1/2 of passing a component

containing a defect which can cause a high failure rate X > 1. But there is

a high probability of passing a component having the nominal (low) failure

rate, which without loss of generality we take to be unity.

The reliability of this Bernoulli-mixed exponential population is

-Xx x frx>0
R(x) = pe + (1-p)e for x > 0.

Whence, we find the standardized hazard to be, for x > 0

vxQB(x) = -Znp + - .n(l + re) (2.5)

One verifies easily that qB(0) = (pX + q)/ = 1 with

r = lp. , - X-i > 0, 1 = p(X + r). (2.6)

We shall write, respectively,

T JA(a,B;y) or T - JB(a,:P,k)

whenever the starndardized hazard QA , is defined in (2.4) or QB as defined

in (2.5). Also without further mention we shall use the same subscript to

denote other functions associated with these cases.

It is possible to introduce an alternative parameterization to (2.2),

namely
a Q (tp)

R(t) = e for t > 0; a,B > 0, (2.7)

where Q is a knovn cumulative hazard. The advantage of this form is

that with standardized q we see from L'Hospital's rule that B -+ 0 implies

R(t) - e- a t . Thus the limiting case is an exponential distribution. In

either formulation one sees that 0 measures the rate of departure from a

constant failure rate in terms of Q and hence determines the rate of

decrease in the failure rate with use. The disadvantage of (2.7) is that
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is no longer a scale parameter and the likelihood equations are sc.ew.hat

more complicated. However, the transformation (a,P) -- (a/0,5) is a 1-1

mapping of the positive quadrant into itself so that araz likell.ocd

estimates for one parameterization could be irmediately transformed t the

other.

3. A CLASS OF TWO PARPAJY FAI"ZLIES OF DECREASiDG
FAILURE RATE DISTRIBUTIIONS

We shall postulate a class D of concave hazard functicns which has

special properties encompassing both mixed exponential and "work hardened"
4

life distributions.

Each element of this class will generate a two parameter family, which

is a subset of the DFR distributions. Reliability will be of the form,

where Q E 9 is a given hazard function,

R(t) = e - Q(t$) t >.O; a,p > 0.

Here q =Q' is a decreasing hazard rate which is twice differentiable,

standardized, i.e., q(o) = 1, and it and the induced functions an ad , where

px) = xq(x) and c(x) = 1 + xq'(x)/q(x) (3.1)

satisfy
01 °  is increasing

20 q is log-convex

30 C. has a limit at o and 0 < < 1,

alternatively, sometimes the stronger condition is assumed, viz.,

3' is decreasing.
The question arises, ".'here did such assumptions come from and what dis-

tributions, if any, satisfy them?" One sees irmediately that if q decreases then
qY decreases for any y E (0,1) so that D is closed under fractional powers C
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of the hazard rate. The Afanasbv generalization of the Lcrax distribution

has hazard rate q given by (2.3). One sees that q is decreasing

and Znq A is convex. Moreover, one checks easily that 'A is increasirZ and

in this case

A(t) = [l + (l-)t]/(l+t) 
(3.2)

is decreasing with A -= -Y. So in this archtypical exa.-rple assumptions

10, 20, and 3' are met.

* In the Bernoulli mixture of the two exponentials we find from (2.5)

2 -vx.(X) _ r1V , Vx) = -v re (3.3)

(e-VX+r) (e- X+r)
2

and since r > 1,

q1(x) = v 3 re-VX(r-e-VX)/(e-VX+r) 3 > 0, (3.4)

thus

2 -vx"

tB(x) - xr e j

(Xe-"X+r) (e-VX+r)

so we see that =(-) = 1 and that 30 is satisfied.

We next show that "'B is an increasing function. To see this we note

that 'V(x) _ 0 for all x > 0 if, after simplification,

&e- VX + r 2 evx V2 r x - r(l + X), for al' x > 0

Let y = evX then the inequality above becomes clearly true for 1 r-y

where tn yo = (1 + X)/( %- 1). Let y=yt for t > 1, then the inequality to

be proved becomes
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X 2 Zn t
2 + r YO >vrL , for all t > 1.

But the right hand side is maximized at t = e, so it is sufficient to have

YO - vWre, which is implied by

p X- (3.5)

1 + (X-1)e2/(X 1) "(x + 1)

(The approximation is always less than the bound.)

We now must show that trq is convex. To prove this it is sufficien

to show that (q) . But substitution and simplification from (3.3)

and (3.4) into the equation above shows (we spare the reader these details)

that this inequality is true for all x > 0 iff r _ , if and only if

p < (1 + A) (3.6)

We claim that (3.5) and (3.6) would be virtually always true in practi

since if, for example, X should be as high as 10, then the probability of

passing such a bad component, with a failure rate ten times the nominal

design rate, must not exceed .082. This would seem to be a reasonable

assumption, at least for firms that intend to remain in business. Furthe

this demonstration shows that not all mixed exponential (and hence not all

DFR) distributions satisfy our three assumptions and that there are DFRI
distributions which are not mixed exponential, which do.

Let us consider the failure rate q of the garrma distribution itself,

assuming a shape parameter 0 < v < 1 and unit scale parameter. For x > 0,

the failure rate satisfies the relation

l/q(x) f (1 + )vletd = x (1 +y)le-Y dy (3.7)

0 01
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From the first equality we see I/q is increasing for any 0 < v < 1. From

the second we see [xq(x)] - I  is decreasing for this DFR distribution; thus

10 is satisfied. Again using the first equality in (3.7) we find that

p (x) is non-negative, does not exceed unity and approaches one as x -.

Hence 30 is satisfied.

To check that 20 is satisfied also is more difficult; we examine

A Znq(x) = (v-l)en x - x -n[ te-tdt].

It is thus sufficient to show that

(,nq)"(x) 2 V + q'(x) 0 0 for all x > 0. (3.8)
x

From (3.7) we have, after differentiation,

-a'(x) 1 - f (1 + rxv- -tdt.

q2(x) x 0

2Thus to prove (3.5) it is sufficient to show that 1 - v _ x q'(x),

which is the same as

* ~4O ( ~V-1 e t]2 00v-2 ttt

Making the substitution y = t/x, then writing the squared term as the product

of two integrals, one in u and the other in v, the inequality becomes

(l + u)' - 1 eUXdu (l + v)-1 e-VXdv > (i + y)- ye-yxdy.

Making the change of variable u + v = y on the left, the inequality

becomesi00
f (i - u2 + y + uy)V1Idu eYXdy >. (i + y)v-2 ye-YXdy.

- 0 .0
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Thus, it is sufficient to show that the integral on the left exceeds that

on the right, i.e.,
Y 2 v-I1
0 1 + u y " u-+ du >---- for all 0 < u < Y <',r 1 + y 

which is clearly true . FT

Of course not all DFR distributions can be obtained by an exponential

mixture such as given in (2.0). For an exact description of the extreme

points of the class of DFR distributions, see Langberg et al C9]. Moreover,

only particular mixing distributions, thought to be of practical interest,

will concern us here, along with their corresponding Afanas'ev generalizations.

Thus we will examine only a subclass of the DFR distributions.

In a recent paper, McNolty, Doyle and Hansen (1980) have dealt with

the mixing problem by examining some mathematical methods for invertirg a

general mixed-exponential reliability to obtain the mixing density. They

have also discussed some of the physical interpretations of the relationship

involved. We attack a related problem.

We now ask what are sufficient conditions on the mixing distribution so

that assunptions 10, 20 and 30 will be satisfied for any Afanas'ev general-

izations of mixed-exponential? In the following discussion we always omit

the limits of integration when they extend from 0 to -.

Theorem 1: If the mixing distribution G is such that the function

K(x,y) = G(y/x) for x,y > 0

is totally positive of order 2, then 1° is satisfied, i.e., G

is increasing.

.7Mo
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Proof: Making a change of variable in the definition we see

4'(t) fye-YdG(y/t) /fe-YdG(y/t).

Upon integating numerator and denominator by parts, we obtain

fG(y/t)Ye-YdY
*(t) + l

fG(y/t)e-Ydy

Let t >tshow *(t 1 *(t2). This is true iff

JG(y/t2)ye'Ydy, fG(Y/t2)e-Ydy

* JG~/t9Y&dY~ fG(Y/t )eY

By applying the basic composition formula of Karlin, see e.g., p. 100,

Barlow and Proschan (1975), to the right-hand side above, it becomes equal to

G(yl/tl), G(y2 /t I) Yle - y , e-Yl

X ~ dy 1 dY2.

ClealyG(y 1/t2), G(y2/t2 )  y 2
e Y2, eY2

Clearly the second determinant is negative and that the first is negative,

by definition of TP-2, can be seen by setting xI = t2, x2 = t 1 .

The hypothesis of this theorem has a relation with Polya-Frequency

functions of order 2, if it were expressed as the difference of the logarithms

rather than as a ratio.

LJ



15

As we have previously seen for a binomial mixture of exponentials, some

restrictions were necessary, namely p 5 (1 + v)-I , to insure that Znq was

convex everywhere. We now give some conditions that a mixed failure rate

be log-convex on (0, 0).

Theorem 2: If for a distribution G on (0,-) we define the convolution

(2)=.
G -G * G and the related function

G2 (4) = f (t- U_2 dG(t) dG(u) forz > 0 (3.9)

u=0 t=O

then the failure rate of the G-mixed exponential distribution is

log-convex iff for every exponential random variable Z we have

E 2AG(Z) _ EZA G (Z),

where

AG(Y) f G2 (y-6) d G(2) (3.10)

0

Proof: I'Yom equation (2.1) we find for fixed t > 0 that

(L O2 tn _ LL (L 2 2
(p L0  (tnqV" = 2 - (PP- l ( 2OPJ

where -

wi Xi e-td G(X) for i = 0,1,--.

0

Thus we may write

03-L,2 frx3e-xtdG(x) fe-YtdG(y) - f x2e-xtdG(x) fye-YtdG(y).

Setting, for notational simplicity,

d H(x,y) = e-(X+Y)tdG(x)dG(y)

we find it can be written

- f x2(x-y) d H(x,y) + ff x2 (x-y) d H(x,y),
X>y x<y
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and by making an interchange of variables in the second integral, obtain

O'p3 - ;142 = ff (x+y)(x-y) 2 dH(xy).

x>y

By a similar argument we obtain

2 =  ff (x-y) 2

x>y

From arguments of syimnetry we see that

,0 = ff x dH(x,y) =Jf y dH(x,y)

and so

and s0+2 =ff (x2+xy) dH(x,y)= f(y 2 +xy) dH(x,y).

2Hence we see that for c = 2(41P0) , with the obvious change of variable

c(Znq) = (u+v) dH(Uv) j >y(X+Y)(X-Y) dH(x,y)

-ff (U+V) 2 dH(u,v) ff (x-y) 2 H(x,y).

Now let w = u+v , and simplify to find that

2c(enq) = f (xy)2 (x+y-w) dH(x,y)] w e-twdG(2)(w).

The quantity in square brackets above can be written

[.. f ' (x-y)2(x+y-w)e-t(x+Y dG(y)dG(x).

x=O y=O

Letting x + y = 4 we obtain, in the case the density G'=g exists,

I. (s-2y)2 (4-w)e-tSg(S-y) g(y)dyd6.
J 0 y=O

For this case 
we set 

0

92 GO= f (s-2y) 2g(&-y) g(y) dy for 4>0,

0
and verify that = g2 " In the general case the quantity becomes

0
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Hence for some cI > 0 we have

c 1(enq)- = f f w('S-W) e-t S~w dG2 (,6 dG2 ().31)

0 0

Assuming, only for notational convenience, that both g2 and g(2) exist

we have

Cl(nq) e-tX (x-S)(2 .-x) 2 D (2) (x-s) d6 dx.

Let us set

f(',x) = 4 g2(x-s) g(2) () for 0 _< 4 _ x, (3.12)

then we can rewrite the quantity in braces above, after brea-king the integral

into two parts and changing variables in the second, as

x/2
(.}~ =f (x-2a)[f(sx)-f(x-s,x)]d, = 2AG(x) - xAa(x) .

0

The second equality is obtained by integrating each term of the difference

by parts and simplifying the resulting expressions where

A () (X, (2) (s sx

0 0

By utilizing the Liebniz rule for change of the order of integration

this can be seen to be equal to the expression for AG given in the hypothesis:

The proof of the theorem is completed upon noting that

cl(enq)- f e'tx[2AG(x)--xA (x)] dx . fl (3.13)

0
We ncwt give scme suf icient conditions that Znq is convex.
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Corollary I: If the mixing distribution G is such that the induced function

AG ) defined in (3.10) is concave increasing then

2AG(x) _ xA5(x) for all x 2! 0

and the failure rate qG is log-convex.

The proof is obvious since A' is positive, decreasing.

Corolla-y 2: If the mixing distribution G has a density g G' and the ratio

x g(2) (x)/g2 (x) for x > 0
is monotone decreasing, where g2 and g are the corresp(ndi2)

derivatives of the functions defined in theorem 2, then the failure

rate qG is log-convex.

Proof: It is sufficient to note that

f(sx) >_ f(x-s,x) 0 < s < x/2,

where f was defined in (3.12). Tihus we must show

g (2 ) g2(x-s) _(x-s)g2 (2) g(2(x-s) 0 <s< Y/2,

which upon division is seen to be guaranteed by the monotone behavior of the

ratio assu.ed in the hypothesis .

Remark: If G is a r(a, 1) distribution then one verifies directly that

x g (2)(x) - 2+ 1 for x > 0

g2 (x) 
x

which decreases.

By Coro!!-ry 2 we are assured that the gamra mixture of exponentials

will have a failure rate which is log-convex: A fact which can be verified

directly from (l.!).
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We now examine the behavior of the induced function < where Q e Q.

We note that always, since q' < 0 and 4 0 - 0, that

1 + - = -- >0
- q q

If . is a given function bounded between zero and one, differentiable at

zero with e(0) = 1 and f'(0) _ 0, having a limit at - and for which the

ratio :-l is increasLng for t > 0 then by regarding the expression
t

(3.1.B) as a differential equation in the tuknoim function q the solution

I- "(x)
q(t) = exp{- J x dx} for t > 0

0
defines a decreasing failure rate, which is log-convex, standardlzed and

for which t q(t) is increasing, i.e., it satisfies the assumptions

10, 20 and 30. We note that t(t) = 1-y + y(I + t) - 1  generates the

Afanasev generalization of the garma-mixed exporential model. We now study

tbe behavior of the indnce. in the case :: a ge-eral mixed e~xonential,

in particular its asymptotic behavior as determined by the behavior of

the appropriate mixing distribution G near 0.

We do not consider as reasonable (for our application) mixing

distributions which are of infinite order at the origin, such as
-2

G(x) = e - x  for x > 0. ''e admit for consideration only distributions which

are either

(i) discrete in some neighborhood of zero or

(ii) of finite order at the origin, viz., there exists
> 0 such that x- K G(x) - c>O as x - 0

C
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Theorem 3: For any G-mixed exponential distribution the induced function

G has the properties that 0 = 1, is initially decreasing, bounded

above by unity, and the limit YG(o) exists with

O( O) = 1, if 0 is of type (i) and

tG-= 0, if G is of type (ii), moreover

>e 0 iff is increasing.

Proof: Considering equation (2.1), we can write for any t > 0,

1 - (t) - -tq (t) _ t f e-xtd G2(x) (3.14)

q(t) fY e-Ytd G( 2) (y) -

using the methods and notation of theorem 3

Thus we see from (3.14) that K (o) = 1, and since the right hand side

is positive, that.1 :t (t). We see K initially decreases linearly with slope

q'(o) since

o) o (x )-l q'(o).

Making use of classical Tauberian theorems on LaPlace transforms,

e.g., Widder (1946) p. 181, we obtain the limiting behavior of G at .

The last claim follows from the identity /q = G/qG [I

We now consider conditions on the mixing distribution which will insure

that 1 - is either monotone increasing or unimodal. Such behavior can

often be easily checked in each specific instance but we have a sufficient

condition in

*1
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Theorem 4: If the associated function AG, as determined from the mixing

distribution G in (3.10), is such that the kernel

K(x,y) = AG(Y/x) for x,y > 0

is totally positive of order 2, then the function 1 -G

induced by the failure rate of the G-mixed exponential

distribution ill have at most one mde in [0, -]

Proof: By taking the derivative of equation (3.14) and considering only
numerator we find, utilizing notation from the hypothesis of theorem 2, that

num[- (t)] = [-ty(x-y) + y] e- ( x + y ) t dG (2)(y) dG2(x)"

By comparing the first term above with equation (3.11) and using the

representation in (3.13), as well as making a change of variable in the secord

term to obtain a convolution, we find after simplification

= (y-2)e- y  AG(y/t) dy.

We note the function (y-2)e-y for y 0 changes sign exactly once,

and so by applying the variation diminishing properties of Polya frequency

functions, see e.g., p. 93, Barlow and Proschan, we conclude that -: (t)

changes sign at most once. Therefore, 1 - 'G Possesses at most one mode.

In any life length model one is interested in the distribution resulting

when independent components, from the same family, are connected in a series

system. From the concavity of the hazard Q e n fol±ws the

Rer, trk: Tf components with independent life lengths Ti-JQ (ai,Ai) for i = 1,...,n,

for some Q e , are in series then the life of the system T will satisfy the

stochastic inequality

T min Ti > JQ (2ai, Eci.a/Zai)

with equality when
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Another property one would ask of any model in which the failure rate is

initially decreasing is what improvement can be made by "burning-in" a component

having such a life? In practice it is often assumed that as a result of a burn-in

period, surviving components are exponentially lived. In fact, burn-in tests are

often required in electronic component procurement with a statement of the

ultimate failure rate so obtained.

Of course, not all decreasing failure rate distributions do become constant

after some finite initial period, but that is an assumption which is often

thought to be appropriate. This indicates the importance of the second model

introduced and of its utility in a determination of the economic value of the

stochastically extended life.

The residual life T of a component with new life length T and a burn-in

of duration -c > 0 is the conditional life remaining after tie r given that

it is alive then; i.e., T =[T-,rT > ].

The residual life of any G-mixed exponential is again a mixed exponential

but with a different mixing distribution. The residual life will have density

f(y) = ce'rYdG(Y), where c is the normalizing constant.

But is the class n closed under burn-in? A burn-in of duration t for a

0 component with hazard Q e 2 will yield a residual life T with hazard rate
-- r

(t) = q (t + r) for t > 0.

* .I  Clearly q, is not standardized but one sees, after brief reflection, that '

is increasing, qr is log-convex, K approaches a limit in [0,1], if r does,

and lastly, is decreasing if K is. Thus the answer is affirmative, except

for standardization.

It is easily seen that T is stochastically larger than T for all T > 0

but usually the burn-in time T is Increased until any incremental decrease in the
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residual failure rate is not worth the incremental cost of testing. This point

will necessarily be somewhat different for each particular Q.

Remark: A burn-in of r units of time on a component with a new life T - JA(a, )

will yield a residual life

T [ JAE(l + Tr)I - , P/(l + TB)].

If T - JB (a,:p,X) then a burn-in length T will only alter the proportion of high

failure rates, viz.,

r",T JB(a,p8:p',X)

where the altered proportion is given

J. Ip- pe-XTP /(pe -X BP +(l-p)e- B).

4. ESTIMATION OF P.aARsTR USING INCOr=LETE SAPLES

The samples, that are obtained when components having a DFR life

distribution are tested, are virtually always incomplete in the sense that

testing is stopped before all components have failed. A datum on a component

that "failure has not yet occurred after a specified life" is called in practice

an alive time or a run-out. Samples containing such observations are said to

be cenwo ted. Samples in which life tests are truncated at some preassigned ordered

observation occur infrequently, in our experience, when electronic components are

tested.

It is assumed throughout this section that we are given a sample vector

t=(tl, ...,t k ' ... tn) where tl, ..., tk are ordered observations of times

of failure while t+, . ., tn are the ordered observed alive-times, with
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1 f- k _ n. All observations are presumed to have been obtained by testing

components having a JQ(aO) distribution with unknown parameters a and 0, but

with Q e D and y specified.

We now introduce notation for the two empirical distributions (call them

Fk and F ) of the times of failure and of the sample, respectively. We set

Fk(Y) ! {# of t5 y for i =l, ... ,k}

and similarly for Fn, and we make the notational convention, to be used

subsequently for any function g, that its transform, according to the empirical

distribution, is denoted by the proper affix,

g (x)= (xt)dFn(t), (x)- g(xt)drk(t)"

Some results will now be given on maximum likelihood estimation of the

unknown shape and scale parameters in the case of censored samples with

Q e : and y e (0,1] specified.

The sample vector

_t (tl,...,tk,.. .t n  for 1 5 k _< n

corresponds to the observed events

[Ti = ti] for i = 1, ., k and [Ti > ti] for i = k + 1, ., n.

By definition the log-likelihood, after substituting from (2.1), is given by

k n

k ln(aB) + n q(ti8) - a Z Q.C8 ) B
i=l 1 =i

Dividing by the constant k, we write " resulting function of the parameters

a,e,given the vector tas
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L(ap 8It) 9n a + Xn B + rnq(3) an (4.1)

where we have made use of the notational convention introduced earlier.

Parenthetically, for given B > 0 the likelihood L(.IB, t) is concave

on (0, -) and the D'E of a exists uniquely and can always be obtained from

the equation L'(aIB.t) = 0.

We thus have

Remark: When the scale parameter B > 0 is given, there exists a unique

ArE of a. say a, given explicitly by

Aa k/n Z (B). (4.2)

This result is well known. If is known and Q given, concave or not,

then the values yi = Q(ti 8) for i=l, . .. , n can be calculated. They are the

alive and dead times from an exponential distribution with unknown failure rate

a. The total life statistic divided by the number of failure yields the usual

maximum likelihood estimate of the mean life.

It s also true that not any set of n positive numbers (tl, . ., t )

with 1 -5 k -5 n designated as failure times and the remainder as alive times can be

used to estimate uniquely both the unmown parameters for any Q.e D. In some sense

the sample must be close to what would be likely from such a hazard function.

We examine the case for unknown P in

Theorem 5: When the shape parameter a is presumed known and a sample vector

t_--(t 1 , . tk, tk+l, . tn) and Q e Dare given, there exists an NUE '

of B, denoted by 9, and defined implicitly as the smallest positive root

of the equation

z (x) - - V (x) = 0 (4.3)
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only when

inf -l(y) < < 1 (4.4)
ky>O

Remark: The condition (4.4) is determined principally by the behavior of ,

since * is always increasing by assumption 20, mapping (0, -) into (0,-).

For example,. may be monotone decreasing, as is A with tA(o) = l-y, while

B only decreases initially but is concave-increasing, ultimately, with

Proof of theorem 6: From (4.1) we see the likelihood L(Bla , t) can be written,

neglecting constants not depending upon B, as

L(Bja, t) an() n. ZO

If we define A(3) = L'(Bea, t), we see we must determine the roots of

A(x) = t(x) - an i' (x)k

which confirms equation (4.3) as the appropriate one. To check the necessary

-ondition we see the likelihood increases initially as x increases since

A(O) = Z(O) = 1. But ; is always increasing, while is only initially

decreasing, since

lim "(0)= v(0) < 0.
x40

But, by assumption 30, the limit t (-) is in the unit interval. Thus for a

solution to the equation

E(k)- (y)] for y > 0

to exist, the range of the composed function must contain the value an/k, as

stated in the hypothesis.
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We see that the second smallest positive root of equation (4.2), if it

exists, will be a minimum likelihood estimate of 3. This situation can occur

frequently. If there are either more than one local maxirra to L(gla, t), i.e.,

three or more roots to (4.2), or there is no maximum in (0,-), then this would

indicate that the presupposed choice of a and/or of Q e D should be reexan-alned.

That is to say, either the initial failure rate a is not of the right magnitude

to reflect the nurter of first failures observed or the induced function : does

not decrease monotonely over a sufficiently long interval.

A simpler situation exists in the following case.

Theorem 6: If Q e _ is an Afanas'ev generaliztion of a G-rixed exponential,

when G is of type (ii) and 0 < v < 1, with a Imotv thtn for a given sample

the NElE of 3 exists iff

an

Proof: We note by theorem 3, since G is of type (ii), that the range of ,

the induced function for the G-mixed exponential, is [0,1]. Letting q = (qG)v

we find = l-y + - G so that the range of ' is [l-v, 1]. We find from

equation (2.1) that

*(x) = 1-V  f G(y/x)d(ye-Y)

7G(y/x)d(e-y)

so that lim *(x) - thus by equation (4.4) the result follows.

Corollarx 3: Under the hypothesis of theorem 7, if G is monotone then so is

and the NL of p exists tuiquely, i.e., there is at most only one solution

to the equation (4.3).

li,
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We now turn to the estimation problem when both a and B are unk:nown.

Theorem 7: For a given sample t, with Q e ! specified and a,8 both unknown, a

NUE of 0, say @, exists as the smallest positive root of the equation

(x) - C(x) = 0 for x > 0

Where i = /Q , 1ff the sample satisfies the inequality

2 t-t< t 2  (4.5)

When has been determined, the NLE of 5, say is then given by an

analogue of equation (4.2), namely,

A

a = k/n Q(3). (4.6)

Proof of theorem 7: Consider the likelihood function L(a,$It), as given in

(4.1), defined over the positive quadrant. All the statiorary points, which ae

determined by t, can be found from the simultaneous solution of a= 0, - 0.8a a

This yields the two equations in a and B

k aak

Combining these into a single equation in the uniciown B, we are led to seek 3 as

a zero of the difference (x) - t(x) for x > 0 where 4 = W/T . If we maximize the

likelihood with respect to a for any value of B by substituting a kn7(2) into

(4.1) and obtain L(k/nQ(B),31 t), then neglect constants independent of 'A, we obtain

a function, call it B, which can be written, ncw using argment x, instead of n, as

II
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B(x) - 'q(x) - 1n[Q(x)/x].

Interchanging the order of integration in Q(x)/x we obtain

Q(x)/x = Tf q(tx) dWn (t) q*(x)

where W is the distribution, with density given by

Wn(t) = [1-Fn(t)]/ for t > 0.

Again neglecting constants, we have

B(x) 4j0 Rnq(tx) dFk(t) Zn[ 0 q(tx) dWn(t)J

= Znq(x) - znq*(x) (4.7)

Using a Maclaurin expansion of q we see

B(X) = x q'(0) t - t*] + O(x ) as x -, 0,

where t ft dFk(t) and t*=f t dWn(t) =t 2 /2t

Because q'(0) < 0, it follows that B is positive in a neighborhcod of zero

iff t < t*. Since B(0) = B(-) = 0, we must have B'(x) = 0 for some x > 0.

.Mcrecver, one verifies that xB' = - % and so the =E can be found as the

smallest positive root of this difference. ('T'he second smallest root, if it exists,

wtll be a rainLdrm likelihood estimate.) Having determined B one uses the partial

derivative equated to zero to obtain a.

We now discuss the situation when th~e sa.-:le fails to satisfy the cond-iticn

2 t < t 2 , and Mi's do not exist uniquely. This means that the model, i.e., the

choice of , may not te a p rorriate ani either a constart fallure rate mDel ora

convex failure rate mc4el (one tha ! iritially decr-isinr and ultimately increasing)

may be indicated rather tinn a Y7 -odel , :wth ', .
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5. THE COMFUTATION OF n FOR CENSOFED SA=LES

As a matter of practical calculation we are concerned with the smallest

root of the difference 4 - @, in the case when 4 is monotone decreasing.

Equivalently, let us consider the composite function f(x) 4 (x)] in a

neighborhood of zero with the location of the smallest crossing, if there is

more than one of the 450 line.

An alternative expression for 4 is 4 = xQ/Q, with Q a convex function

decreasing between t-and t- q(-), while the smoothed Q , viz,, C/x, decreases

between the same limits at a slower rate. It follows that Q/x _ Q _ 0 so that

0 f- 1. Then t begins at unity, initially decreases at a decelerating rate

and tends Ultimately to 4(0). To see this note

( ) ~ =2i ,/ lim. t1-'(xt)' q(tx)C(tx)dFnt --(W

f tlv(xt)Vq(tx)dFn (t)

sincebyWidderloc. cit. there existsa L&['l] such that xuq(x) -+ a 0 0, as x-. -.
The composite function f = 4I @ behaves in a neighborhood of zero as a

contractive map, being initially greater than x, then crossing at B and then

being below x for a range, perhaps, thereafter.

Thus we know that successive iterates
Bi+l = f(8i  for i = 0,1,2 . . .

will converge to B > 0 as long as B0 < B0, the next larger zero of

-4), if one exists. Otherwise the iteration will converge to zero.

Moreover for the special cases in (3.2) the inverse l can be easily found.
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Our computational procedure based on the sample is as follows:

Alzorithm: Given tl, ., tk as failure times and tk+l ., n as

censored live times from a DFR distribution, proceed as follows:

(i) Compute the sample moments t, t, t

(ii) If tl < 2- t, assume the observations are from an exponential

distribution with failure rate X and estimate it by

k

nt

(iii) If t > 2t t, assume the observations are from a DFR

distribution, with prescribed Q E

Using the sample functions explicitly given by

n n k4 (x) X E t tiq(xt i ) / E Q(xt i )  (x) = 1 +T k [tiq (xti)/q(xti)]'
= .1 1 11 ~.

we guess O then iterate using the inductive step;

given ai, compute I(Bi) and calculate B i+1 such

that

S(i+l 1  1 (B

we find =lim i, and compute

A na k/ E Q(t i

11

The nature of the intersection guarantees that within the region when

0 and both decrease the iteration will rapidly converge, with a rea-

sonable first guess. When the functions q and Q are simple a small pro-

grammable electronic calculator, such as the HP-67, can be used to obtain

these estimates.
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We now present some data sets from two different lots of flight control

electronic packages. Each package has recorded, in minutes, either a failure

time or an alive time. An alive time is the time the life test was terminated

with the package still functioning and is denoted by an affix +.

First Data Set

., 8, 10, 59+, 72+, 76+, 113+, 117+, 124+, 145+, 149+, 153+, 182+, 320+.

Second Data Set

37, 53, 60+, 64+, 66+, 70+, 72+, 96+, 123+.

One checks that both data sets satisfy condition (4.5) so that both

parameters can be estimated in a ganma mixed-exponential model. Then using

the estimation techniques derived previously in this paper we have the

following estimates:

Data Set 1 Data Set 2

& = .04S3,a = 1.03 & = .420, = .01

A statistical test-to determine whether the data require a constant or

decreasing failure rate was run on the data from sets 1 and 2. For data set

1 we reject constant failure rate (in favor of decreasing failure rate) at

the .10 level. For data set we cannot reject the constant failure rate

assumption. In this case, however, the constant failure rate estimates for

reliability and the mixed exponential estimates for reliability are close.



7. Conclusion

We are primarily concerned with the problem of estimating the hazard

rate of a component, such as an integrated circuit, assuming that it has

either a constant hazard rate or a decreasing hazard rate of specified

functional form with shape and scale parameters unknown. The influence of

the data is different in this case than in the more usual case of hazard

rate known to be increasing.

If a component has a life distribution with an increasing failure rate,

the information necessary to estimate its parameters must contain failure

times. In practice this means that if there are few observed failures, within

a fleet of orperational components, there is little information with which to

assess their reliability. If a component has a constant failure rate then

both failure times and alive times contribute equally to the estimation of its

reliability. This study suggests that if a component has a life distribution

with decreasing failure rate it is the alive times within the data which con-

tribute principally to the estimation of the parameters (and thereby to the

determination of the reliability) since only one failure observation is required

even to estimate two parameters, presuming the data is ample.

Note that for a sample of size two, both of which are failure observations,

the inequality (4.5) cannot be satisfied since t1t2 > 0 implies that
2 2 22

2( ) > (t1  + )/2; but if t, is a failure while t2 is an alive time,

for which (1 + /2)t1 < t2, then the inequality is true.

To illustrate the typical behavior of the likelihood B, as given in

equation (4.7), let us assume that 'the sample distributions Fk and W as
n

defined previously satisfy Fk > Wn; this implies t > t . (Strictly speaking

this condition cannot ever be met since even if the failure times are

stochastically smaller than the sample containing failure and alive times



together, i.e. F > F , still we would have 0 = Fk < Wn on (O,tl). But

since k < n on (tl,=) we would have t < t if and only if

00 2l [n(t) - r(t)] dt >_ t1 [1 - 1/2n -E]

Because t I is very small in practice this is virtually always true.)

From this assumption would follow q > q* and since Zn is concave, that

in q* > (in q)*. Hence from (4.7) one sees that

in q - Zn < B < Zn q - (in q)*.

Now one notices that the lower bound is alwasy negative while the upper bound

is always positive. But near the origin B is approximately equal to the upper

bound while for large values of its argument B is approximately equal to the

lower bound and for intermediate values B makes a transition between.

Thus for any sample in which the failure times are stochastically

smaller than the combined sample times and for which 2t t < t2 we find a

maximum likelihood estimate of as the smallest positive root and a minimum

likelihood estimate of a as the second smallest root. In the case

2t t > J, which could occur with complete failure data, we would have a

minimum likelihood estimate as the smallest positive root and a maximum

likelihood estimate at a 0. The frequency with which this occurred under

various mixtures was studied by Sunjata (1974). Maxima occurring at such

boundaries were also observed by Davis and Feldstein (1979) in their study. Of

course by arbitrarily grouping failures several local extrema of B can be con-

structed. This is regarded as being of little practical significance.

The usual justification for using maximum likelihood estimates is due to

their asymptotically optimal properties, and to their asymptotic normality.

The problem of obtaining the usual sampling distributions of the M.E's of the

parameters obtained for these DFR models seems to be difficult, not onlyN
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because the estimates are only implicitly defined, but also because samples

are virtually always censored. Furthermore, the usual proofs for the

asymptotic optimality of the MLE's may not apply when censoring is of a

general type and when only sparse failure data are available. A useful

asymptotic theory must be developed for censored data sets of which the

life of electronic pacages of integrated circuits are an illustration.

V

A
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